Comment Calculer L Air D'une Pyramide
Dans cette fiche explicative, nous allons apprendre annotate calculer les aires latérales et totales de pyramides à l'aide de leurs formules.
Les pyramides sont des figures géométriques en trois dimensions, ou des solides, dont la base of operations est un polygone et toutes les autres faces, appelées faces latérales, sont des triangles qui se rencontrent au sommet.
Une pyramide peut avoir pour base n'importe quel polygone, tel qu'un pentagone ou un hexagone, mais nous allons nous concentrer sur les pyramides à base of operations triangulaire ou carrée dans cette fiche explicative. Nous allons de plus supposer que les pyramides vérifient les propriétés suivantes.
Définition : Pyramides droites et régulières
Une pyramide droite est une pyramide dont la hauteur coupe la base of operations en son centre géométrique, ou barycentre. En d'autres termes, le sommet d'une pyramide droite est situé directement au-dessus du center géométrique de la base. Une pyramide régulière est une pyramide droite dont la base of operations est united nations polygone régulier.
Nous allons supposer que toutes les pyramides apparaissant dans cette fiche explicative sont des pyramides droites. Cela signifie donc qu'une pyramide à base carrée est supposée être une pyramide régulière car un carré est un polygone régulier. Une pyramide régulière possède une propriété qui simplifie le calcul de son aire.
Propriété : Faces latérales d'une pyramide régulière
Toutes les faces latérales d'une pyramide régulière sont des triangles superposables.
Cette propriété décrit en réalité la symétrie de rotation d'une pyramide régulière. En utilisant la hauteur de la pyramide comme l'axe de rotation, cette propriété nous indique qu'une pyramide régulière admet une symétrie de rotation dont fifty'ordre est égal au nombre de sommets de la base.
Pour calculer l'aire totale d'une pyramide, il faut additionner l'aire de la base et les aires des faces latérales. Dessiner le patron de la pyramide peut alors aider à visualiser ces faces. Le patron d'une pyramide à base carrée est par exemple illustré ci-dessous.
On peut déduire de ce patron une formule utile permettant de calculer l'aire d'une face latérale.
Définition : Aires latérale et totale
L'aire de chaque face latérale est définie par
L'aire latérale d'une pyramide est égale à la somme des aires des faces latérales de la pyramide, c'est-à-dire des faces triangulaires qui se rencontrent au sommet.
L'aire totale d'une pyramide est égale à la somme des aires de ses faces latérales et de fifty'aire de sa base.
Dans le premier exemple, nous allons calculer l'aire latérale d'une pyramide à base carrée.
Exemple ane: Calculer l'aire latérale d'une pyramide
Si la figure ci-dessous était pliée en une pyramide à base carrée, quelle serait son aire latérale?
Réponse
Cet exemple fournit le patron d'une pyramide à base carrée où sont indiquées la longueur du côté de la base of operations, 14 cm, et la hauteur latérale, 15 cm. Les faces latérales d'une pyramide sont ses faces triangulaires qui se rencontrent au sommet. Sur le patron ci-dessus, ce sont les quatre triangles entourant la base carrée. Par conséquent, fifty'aire latérale de cette pyramide est la somme des aires des quatre triangles.
On rappelle que les faces latérales d'une pyramide régulière à base carrée sont superposables. On peut donc calculer fifty'aire de 50'un de ces triangles, puis la multiplier par 4 pour obtenir l'aire totale des quatre triangles. 50'aire de chaque face triangulaire est définie par
L'aire latérale est ensuite égale à 4 fois l'aire d'une face latérale, c'est-à-dire
Dans 50'exemple précédent, nous avons calculé 50'aire latérale d'une pyramide régulière à base carrée en utilisant la propriété selon laquelle les faces latérales sont superposables. On peut calculer l'aire totale de la pyramide à base carrée en ajoutant fifty'aire de la base à 50'aire latérale. Cela signifie que
Dans le prochain exemple, nous allons calculer 50'aire totale d'une pyramide à base carrée en traçant son patron.
Exemple ii: Calculer l'aire totale d'une pyramide à base carrée à partir de la longueur du côté de sa base et de sa hauteur latérale
Calculez l'aire de la pyramide à base carrée ci-dessous.
Réponse
L'aire d'une pyramide est égale à la somme de l'aire de la base carrée et des aires des faces latérales, qui sont les faces triangulaires se rencontrant au sommet. On rappelle que les faces latérales d'une pyramide régulière à base carrée sont des triangles superposables. Il est plus facile de visualiser l'aire à calculer en traçant un patron de la pyramide.
D'après le patron, on a
Comme les quatre faces latérales sont superposables, on obtient fifty'aire latérale en multipliant fifty'aire d'une face par 4:
La base de cette pyramide est un carré de côté 22 thou, donc
En additionnant ces deux aires, on obtient
Par conséquent, l'aire de cette pyramide à base carrée est de 1 540 thou2 .
Dans l'exemple précédent, nous avons calculé l'aire d'une pyramide régulière à base of operations carrée à partir de la longueur du côté de sa base et de sa hauteur latérale. On peut également calculer l'aire d'une pyramide régulière à base of operations triangulaire mais l'aire de la base of operations est légèrement plus complexe à calculer. Pour calculer l'aire de la base à partir d'une longueur de côté, nous devons d'abord déterminer la hauteur du triangle de la base en utilisant le théorème de Pythagore.
Dans le prochain exemple, nous allons calculer l'aire d'une pyramide régulière à base of operations triangulaire en utilisant cette méthode.
Exemple iii: Calculer 50'aire totale d'une pyramide régulière à base of operations triangulaire à partir de la longueur du côté de la base et de la hauteur latérale
Calculez 50'aire totale de la pyramide régulière représentée ci-dessous, en arrondissant votre réponse au centième près.
Réponse
Fifty'aire d'une pyramide est égale à la somme de l'aire de la base triangulaire et des aires des faces latérales, qui sont les faces triangulaires se rencontrant au sommet. On rappelle que les faces latérales d'une pyramide régulière sont des triangles superposables. Il est plus facile de visualiser l'aire à calculer en traçant un patron de la pyramide.
D'après le patron, on a
Comme les trois faces latérales sont superposables, on obtient l'aire latérale en multipliant l'aire d'une face par 3:
Calculons à présent fifty'aire de la base of operations. La base est le triangle équilatéral sur la figure suivante dont la longueur de côté est de 33,five cm. Cascade calculer l'aire de la base, nous devons d'abord déterminer la hauteur du triangle équilatéral. On peut onetime un triangle rectangle en traçant la hauteur du triangle de la base of operations.
Sur le schéma ci-dessus, on a maintenant united nations triangle rectangle indiqué en rose où la hauteur est définie par une constante inconnue . L'hypoténuse de ce triangle rectangle mesure 33,5 cm. En rappelant que la hauteur d'un triangle équilatéral est la médiatrice de la base of operations, on sait que le côté restant du triangle rectangle mesure exactement la moitié de la longueur du côté du triangle équilatéral. La base du triangle rectangle a donc une longueur de
On peut utiliser le théorème de Pythagore cascade écrire
En réarrangeant cette équation et en prenant la racine carrée positive, on obtient
Par conséquent, la hauteur du triangle de la base of operations mesure . En utilisant la longueur du côté de la base, 33,v cm, on a
En additionnant ces deux aires, on obtient
L'aire de la pyramide régulière ci-dessus est donc de ii 420,57 cm2 au centième près.
Jusqu'à présent, nous avons calculé 50'aire d'une pyramide régulière à partir de la longueur du côté de sa base of operations et de sa hauteur latérale. Dans le prochain exemple, nous allons calculer 50'aire d'une pyramide à base of operations carrée à partir de la longueur du côté de sa base of operations et de sa hauteur.
Exemple 4: Calculer fifty'aire totale d'une pyramide à base of operations carrée à partir de la longueur du côté de sa base et de sa hauteur
Calculez 50'aire totale de la pyramide régulière représentée ci-dessous et arrondissez le résultat au centième près.
Réponse
Fifty'aire d'une pyramide est égale à la somme de fifty'aire de la base of operations et des aires des faces latérales, qui sont les faces triangulaires se rencontrant au sommet. On rappelle que les faces latérales d'une pyramide régulière à base carrée sont des triangles superposables. Il est plus facile de visualiser l'aire à calculer en traçant united nations patron de la pyramide.
La hauteur latérale désignée par sur le patron ci-dessus, north'est pas fournie dans cet exemple, nous devons donc commencer par la calculer. Puisqu'il s'agit d'une pyramide régulière, on sait que la hauteur de la pyramide coupe la base en son eye géométrique. La hauteur est le segment en pointillés bleus de longueur 37 cm sur la figure initiale. Ce schéma représente également united nations autre segment en pointillés bleus allant du center de la base au milieu d'un des côtés. On peut former un triangle rectangle avec ces deux segments en pointillés bleus et la hauteur de cette confront latérale.
On voit alors que la hauteur latérale est l'hypoténuse de ce triangle rectangle. La hauteur de la pyramide de longueur 37 cm est un autre côté et le troisième côté de ce triangle rectangle mesure la moitié de la longueur du côté de la base: . En utilisant le théorème de Pythagore, on peut écrire
Cela donne
Maintenant que nous connaissons la hauteur latérale, nous pouvons calculer l'aire d'une face latérale:
Comme les quatre faces latérales sont superposables, on obtient l'aire latérale en multipliant l'aire d'une face par four:
La base de cette pyramide est un carré de côté 32 cm, donc
En additionnant ces deux aires, on obtient
Par conséquent, 50'aire de cette pyramide à base of operations carrée est iii 603,92 cm2 , au centième près.
Dans le dernier exemple, nous allons calculer la hauteur latérale d'une pyramide régulière à base of operations triangulaire à partir de son aire totale.
Exemple five: Calculer la hauteur latérale d'une pyramide régulière à base triangulaire à partir de son aire totale et de la longueur du côté de la base of operations
50'aire totale de la pyramide à base triangulaire ci-dessous est de 958 centimètres carrés et sa base est united nations triangle équilatéral de côté 19 centimètres. Calculez sa hauteur latérale au dixième près.
Réponse
L'aire d'une pyramide est égale à la somme de fifty'aire de la base triangulaire et des aires des faces latérales, qui sont les faces triangulaires se rencontrant au sommet. Comme la base of operations de cette pyramide est un triangle équilatéral, on peut supposer qu'il s'agit d'une pyramide régulière. On rappelle que les faces latérales d'une pyramide régulière sont des triangles superposables. Il est plus facile de visualiser l'aire à calculer en traçant un patron de la pyramide.
Sur le patron ci-dessus, la hauteur latérale inconnue est désignée par . Nous allons calculer fifty'aire totale de cette pyramide en fonction de , puis déterminer la valeur de en posant l'expression de l'aire totale égale à la valeur donnée.
L'aire d'un des triangles latéraux est définie par
Comme les trois faces latérales sont superposables, on obtient fifty'aire latérale en multipliant l'aire d'une confront par 3:
Calculons ensuite l'aire de la base. La base est le triangle équilatéral sur la figure suivante dont la longueur du côté est de 19 cm. Pour calculer l'aire de la base, nous devons d'abord déterminer la hauteur du triangle équilatéral. On peut former un triangle rectangle en traçant la hauteur du triangle de la base of operations.
Sur le schéma ci-dessus, on a maintenant united nations triangle rectangle indiqué en rose où la hauteur est définie par une constante inconnue . L'hypoténuse de ce triangle rectangle mesure xix cm. En rappelant que la hauteur d'un triangle équilatéral est la médiatrice de la base of operations, on sait que le côté restant du triangle rectangle mesure exactement la moitié de la longueur du côté du triangle équilatéral. La base du triangle rectangle a donc une longueur de
On peut utiliser le théorème de Pythagore pour écrire
En réarrangeant cette équation et en prenant la racine carrée positive, on obtient
En utilisant la longueur du côté de la base of operations de 19 cm, on a
En additionnant ces deux aires, on obtient
On peut à présent poser cette expression égale à la valeur donnée de l'aire totale de la surface:
On peut ensuite simplifier:
Par conséquent, la hauteur latérale de cette pyramide est de 28,1 cm au dixième près.
Terminons par résumer quelques concepts importants de cette fiche explicative.
Points clés
- Les pyramides sont des figures géométriques en trois dimensions, ou des solides, dont la base of operations est united nations polygone et toutes les autres faces, appelées faces latérales, sont des triangles qui se rencontrent au sommet.
Une pyramide peut également avoir pour base d'autres polygones, tels qu'un pentagone ou un hexagone. - L'aire d'une pyramide est égale à la somme de 50'aire de la base et de 50'aire latérale. Pour calculer fifty'aire d'une pyramide, il peut être utile de tracer le patron de la pyramide.
- Toutes les faces latérales d'une pyramide régulière sont des triangles superposables.
- .
Comment Calculer L Air D'une Pyramide,
Source: https://www.nagwa.com/fr/explainers/242126458264/
Posted by: thompsoncuposer75.blogspot.com
0 Response to "Comment Calculer L Air D'une Pyramide"
Post a Comment